寒假必背:高中数学各知识点公式定理记忆口诀归纳
高中 来源:网络 编辑:郁夫 2024-01-24 16:37:36

  数学一直以来都是学习的重要内容,随着步入高中,数学学习起来也就越加复杂,同学们不只需要记清大量的知识点和公式定理,还要可以熟练的应用。因此为了帮助大家在寒假更好的巩固和复习数学,小编将为大家介绍高中数学各知识点公式定理记忆口诀,一起来看看吧!

  1.集合与函数

  内容子交并补集,还有幂指对函数。

  性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,

  若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。

  底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0.

  偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;

  其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;

  图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;

  反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;

  函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;

  图象第一象限内,函数增减看正负。

  2.三角函数

  三角函数是函数,象限符号坐标注。

  函数图象单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。

  正六边形顶点处,从上到下弦切割;

  中心记上数字1.连结顶点三角形;

  向下三角平方和,倒数关系是对角,

  变成税角好查表,化简证明少不了。

  二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。

  两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。

  和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,

  保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。

  条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。

  公式顺用和逆用,变形运用加巧用;

  1加余弦想余弦,1减余弦想正弦,

  幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,

  先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,

  简单三角的方程,化为最简求解集;

  3.不等式

  解不等式的途径,利用函数的性质。

  对指无理不等式,化为有理不等式。

  高次向着低次代,步步转化要等价。

  数形之间互转化,帮助解答作用大。

  证不等式的方法,实数性质威力大。

  求差与0比大小,作商和1争高下。

  直接困难分析好,思路清晰综合法。

  非负常用基本式,正面难则反证法。

  还有重要不等式,以及数学归纳法。

  图形函数来帮助,画图建模构造法。

  4.数列

  等差等比两数列,通项公式N项和。

  两个有限求极限,四则运算顺序换。

  数列问题多变幻,方程化归整体算。

  数列求和比较难,错位相消巧转换,

  取长补短高斯法,裂项求和公式算。

  归纳思想非常好,编个程序好思考:

  一算二看三联想,猜测证明不可少。

  还有数学归纳法,证明步骤程序化:

  首先验证再假定,从K向着K加1.

  推论过程须详尽,归纳原理来肯定。

  5.复数

  虚数单位i一出,数集扩大到复数。

  一个复数一对数,横纵坐标实虚部。

  对应复平面上点,原点与它连成箭。

  箭杆与X轴正向,所成便是辐角度。

  箭杆的长即是模,常将数形来结合。

  代数几何三角式,相互转化试一试。

  代数运算的实质,有i多项式运算。

  i的正整数次慕,四个数值周期现。

  一些重要的结论,熟记巧用得结果。

  虚实互化本领大,复数相等来转化。

  利用方程思想解,注意整体代换术。

  几何运算图上看,加法平行四边形,

  减法三角法则判;乘法除法的运算,

  逆向顺向做旋转,伸缩全年模长短。

  三角形式的运算,须将辐角和模辨。

  利用棣莫弗公式,乘方开方极方便。

  辐角运算很奇特,和差是由积商得。

  四条性质离不得,相等和模与共轭,

  两个不会为实数,比较大小要不得。

  复数实数很密切,须注意本质区别。

  6.排列、组合、二项式定理

  加法乘法两原理,贯穿始终的法则。

  与序无关是组合,要求有序是排列。

  两个公式两性质,两种思想和方法。

  归纳出排列组合,应用问题须转化。

  排列组合在一起,先选后排是常理。

  特殊元素和位置,首先注意多考虑。

  不重不漏多思考,捆绑插空是技巧。

  排列组合恒等式,定义证明建模试。

  关于二项式定理,中国杨辉三角形。

  两条性质两公式,函数赋值变换式。

  7.立体几何

  点线面三位一体,柱锥台球为代表。

  距离都从点出发,角度皆为线线成。

  垂直平行是重点,证明须弄清概念。

  线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。

  计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和平面。

  射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。

  公理性质三垂线,解决问题一大片。

  8.平面解析几何

  有向线段直线圆,椭圆双曲抛物线,

  参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,

  两者—一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;

  都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,

  给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;

  平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。

  图形直观数入微,数学本是数形学


*本文内容来源于网络,由秦学教育整理编辑发布,如有侵权请联系客服删除!
上一篇:2024年龙年新年贺词祝福送给你 下一篇:高中英语作文素材:“计划与愿望”话题词句范文必背
预约领取试听课
我们为您准备了
  • 学业水平系统测评
  • 个性化针对教学计划
  • 线下逆袭试听课
  • 系列学科学习资料
确认预约
热门活动
补习学校
补习学校
考前冲刺
考前冲刺
艺考冲刺  不一样的艺考培训
艺考冲刺 不一样的艺考培训
个性化一对一  小班课辅导
个性化一对一 小班课辅导
  • 热门课程
  • 热门资讯
  • 热门资料
  • 热门福利
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料