初二是整个初中的分水岭,数学成绩对于安全渡过这个分化时期很重要。因此,伊顿教育小编为大家整理总结了初二数学的学习方法大全,包含证明题、函数思想以及列方程等的相关知识。希望此文对大家有所帮助。更多教育资讯与学习资料的领取取,敬请关注伊顿教育陕西网站!
1、重视推理能力的训练
初二是抽象思维发展的时期,对应于学习就是推理能力大发展的时期。
初二数学的学习一般会偏重于跟推理能力有关的内容。
你会发现,进入初二,探究题突然变多了,难度也在增加。
如果能够配合着这种思维,自己有意识地进行这种能力的训练,那么将是如虎添翼。
怎么训练这种能力呢?
(1)每天做一道证明题。
推理能力的提升,不是整天或者一周之内容突然提升的。所以不用着急马上就提升。
每天做一道证明题,就相当于每天对推理能力进行一次训练。
这样天天进行训练,就会促进推理能力的增强。
(2)刚开始,先模仿例题的解题格式。
刚开始学习证明题时,较大的困难就是不知道怎样写。
先通过模仿例题,获得感觉,然后再试着自己创新,是一个比较快的方法。
模仿例题,主要是抓住课本例题。
课本例题一般都会给出完整而且简洁的例题,给我们示范规范的解题格式。
(3)每一道题的步骤都要完整规范。
推理能力是一种可以帮助大脑高速运转的能力,但是,要想真正拥有这种能力,就要多练习。
你怎样练习,它就会给你怎样的能力。
如果平时做题,步骤不完整,或者步骤写得比较乱,长期下来,就会让你的大脑在思考问题时,总是陷入混乱中,理不出头绪来。
这对推理能力的训练是有很大害处的。
所以,一道题目都要争取把步骤写完整。
刚开始时,还不能一下子做到,写完解题步骤后,可以再重新检查和修改,慢慢把步骤写得完整规范。
这样,每一步怎么写,就会慢慢有感觉,过不多久,就可以写出完整规范的步骤。
与此同时,你还会发现,做题时思路也会比较清晰,能很快形成正确的思路。
2、积极培养函数思想
函数思想,是初中阶段的一个思维转折。从学习函数开始,就要用运动变化的思想看问题。
函数的实质也是一个变(自变量),另一个跟着变(函数值)。
正是因为函数思想的这个特点,很多地方的中考题都会选择函数作为出题点。
即使不用函数做题,也会在前面的选择题或者填空题中,出一两道较难的函数题。
(1)要学好函数,首先要能透彻理解函数的定义
理解函数定义,要用具体的函数帮助理解。
比如:y=2x, S=100t, y=3x+1等。
通过这些具体函数,体会两个变量之间的关系。
(2)通过做题,加深对函数的理解
光看函数的定义,只能理解函数的本质含义。
用函数的知识解决问题的能力,只有通过训练才能获得。
(3)要重视数形结合
学习函数,主要就是通过函数的图像来研究函数的相关特点,研究不同函数之间的关系。
那么函数类的题目,多数都可以通过画图来帮助解题。
数形结合,就是把题目中的函数图像都画出来,把题目中的一些关系在图像上标注出来。
看着图形来思考更容易发现各种隐藏着的关系,从而增强解题效率。
3、分解因式多训练
分解因式在解分式方程和一元二次方程时都比较常用。
是今后学习方程类内容的基础。
可是,好多同学在这部分学得吃力。
分解因式这块儿,题型不多,对思维方式的要求高。
学习分解因式时,要注意简单的题目和复杂题目之间的联系,认清不同题型之间的关系,才好从整体上了解各种题型,增强解题能力。
比如:x²-4,是一个简单题,
稍微变化 一下就得到稍难一点的题目:
4x²-16y².
如果你比较一下这两个题型,其实都是用的平方差公式。
它们的区别是:前一题是单纯的字母或者数字组成一项,而后一题,是字母和数字混合在一起,组成一项。
这样,你就会发现其实这两题是同一种题型。
再解第二题的时候,你就知道怎么做了。#p#副标题#e#
4、列方程的能力要提升
到了初二,已经学过了一元一次方程、一元一次不等式,将要学习分式方程和一元二次方程。
这四个知识点,都要用来解决问题。
也就是要做应用题。
而应用题较重要的一个步骤就是列方程。
所以列方程的能力重要。
列方程的步骤一般是:
审题: 找出题中的关系词。
题中表示增减关系、倍数关系、多少关系等等的词,都是列方程的冲刺点。
列出等量关系: 把题目中跟关系词有关的语句用等式表示出来。
设出未知数: 多数情况下,题中问什么,就设什么。个别情况下要设辅助未知数。
列方程: 用未知数来表示等量关系,列出方程。
5、每天坚持复习错题
每天把错题拿出来看一下,看不懂的或者忘记的就再做一遍。
用错题来帮助复习,是较的复习方法。可以直达问题点。