都说初二天上地下,是初中的分水岭。能否在中考取得优异成绩,初二一年的学习很重要。因此,开学升初二的宝宝们不能懈怠,要加油哦!伊顿教育小编今天给各位初二的宝宝们整理了初二数学上册知识点复习梳理归纳----“一次函数”精讲,希望各位同学多多消化,更多教育咨询与复习资料,请关注伊顿教育网。
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值)。
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点)。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法 (2)图像法 (3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数.
当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.
2. 求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标
3. 一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.
4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.
十、一次函数与正比例函数的图象与性质
一 次 函 数 |
概 念 |
如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. |
图 像 |
一条直线 |
性 质 |
k>0时,y随x的增大(或减小)而增大(或减小);
k<0时,y随x的增大(或减小)而减小(或增大). |
直线y=kx+b(k≠0)的位置与k、b符号之间的关系. |
(1)k>0,b>0图像经过一、二、三象限;
(2)k>0,b<0图像经过一、三、四象限;
(3)k>0,b=0 图像经过一、三象限;
(4)k<0,b>0图像经过一、二、四象限;
(5)k<0,b<0图像经过二、三、四象限;
(6)k<0,b=0图像经过二、四象限。 |
一次函数表达式的确定 |
求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可. |
5.一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并
求出这个函数值
解方程组 从“形”的角度看,确定两直线交点的坐标.