大学实变函数到底是研究什么的?为何挂科率如此之高?

高考 来源:网络 编辑:小新 2017-09-05 11:11:49

  说到实变函数,很多学实变函数的娃估计要肝颤了!作为大学里较易挂科的十大科目之一,高数等课程和实变函数相比简直小菜一碟。那么,大学实变函数到底是研究什么的?为何挂科率如此之高?伊顿教育小编带大家来了解一下。

  内容

  以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。

  它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些较基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。

  实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。

  实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,需要给各种点集一个数量上的概念,这个概念叫做测度。

  什么是测度呢?简单地说,一条线段的长度就是它的测度。测度概念对于实变函数论十分重要。集合的测度这个概念是由法国数学家勒贝格提出来的。

  为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分需要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。

  勒贝格积分可以推广到无界函数的情形,这个时候所得积分是收敛的,后来又推广到积分可以不是收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。

  自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。

  什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究一类函数用另一类函数来逼近、逼近的方法、逼近的程度、在逼近中出现的各种情况。

  和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。

  总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支中的应用是现代数学的特征。

  实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛函分析两个重要分支有着极为重要的影响。

*本文内容来源于网络,由秦学教育整理编辑发布,如有侵权请联系客服删除!
文章标签:
上一篇:拓扑学是主要学习什么?学科简介+挂科原因,让你填报志愿不再迷茫! 下一篇:大学较易挂科的模拟电路有哪些分类?为何发展这么快?
  • 热门课程
  • 热门资讯
  • 热门资料
  • 热门福利
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料